An optimized variable-grid finite-difference method for seismic forward modeling

نویسندگان

  • Chunling Wu
  • Jerry M. Harris
چکیده

An optimized fourth-order staggered-grid finitedifference (FD) operator is derived on a mesh with variable grid spacing and implemented to solve 2-D velocity-stress elastic wave equations. The idea in optimized schemes is to minimize the difference between the effective wave number and the actual wave number. As expected, this optimized variable-grid FD scheme has less dispersion errors than the variable-grid FD scheme based on Taylor series expansion with the same stencil. The accuracy of the proposed technique has been tested through the comparison with the analytical solutions and the regular-grid FD method based on Taylor series expansion. The effectiveness of the method is verified by its application for a thin-layer model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPGPU-Aided 3D Staggered-grid Finite-difference Seismic Wave Modeling

Finite difference is a simple, fast and effective numerical method for seismic wave modeling, and has been widely used in forward waveform inversion and reverse time migration. However, intensive calculation of three-dimensional seismic forward modeling has been restricting the industrial application of 3D pre-stack reverse time migration and inversion. Aiming at this problem, in this paper, a ...

متن کامل

The pseudospectral method: Comparisons with finite differences for the elastic wave equation

The pseudospectral (or Fourier) method has been used recently by several investigators for forward seismic modeling. The method is introduced here in two different ways: as a limit of finite differences of increasing orders, and by trigonometric interpolation. An argument based on spectral analysis of a model equation shows that the pseudospectral method (for the accuracies and integration time...

متن کامل

Seismic modeling by optimizing regularized staggered-grid finite-difference operators using a time-space-domain dispersion-relationship-preserving method

The staggered-grid finite-difference (FD) method is widely used in numerical simulation of the wave equation. With stability conditions, grid dispersion often exists because of the discretization of the time and the spatial derivatives in thewave equation. Therefore, suppressing grid dispersion is a key problem for the staggered-grid FD schemes. To reduce the grid dispersion, the traditional me...

متن کامل

Modeling and migration by a new finite difference scheme based on the Galerkin method for irregular grids

Full wave equation 2D modeling and migration using a new finite difference scheme based on the Galerkin method (FDGM) for irregular grids are presented. Since these involve semi-discretization by the finite element method (FEM) in the depth direction with the linear element, spatially irregular grids can be used to compute the wavefield in modeling and reverse-time migration. The mesh can be ma...

متن کامل

Wave-equation-based travel-time seismic tomography – Part 1: Method

In this paper, we propose a wave-equation-based travel-time seismic tomography method with a detailed description of its step-by-step process. First, a linear relationship between the travel-time residual 1t = T − T syn and the relative velocity perturbation δc(x)/c(x) connected by a finite-frequency travel-time sensitivity kernel K(x) is theoretically derived using the adjoint method. To accur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004